
A Framework, Process, and Tools for

Modeling and Simulating Societies

as Evolutionary Complex Systems

Takashi Iba

Faculty of Policy Management, Keio University

5322 Endo, Fujisawa, Kanagawa 252-8520, Japan

iba@sfc.keio.ac.jp

http://web.sfc.keio.ac.jp/~ iba/en/

Abstract. This paper presents a framework, process, and tools for modeling and

simulating societies as evolutionary complex systems. In this paper, we introduce

an object-oriented computational modeling for social sciences in order to model and

simulate complex systems where the model framework, “Boxed Economy Foundation

Model”(BEFM), is proposed. In order to support making models based on the frame-

work, “Model Driven Development” is proposed as a new development process. To

realize the process, we also propose tools, which we call “Component Builder” (CB),

that help us build the models based on the framework and process. It is the tool

to generate the program code just by making the diagram and setting the parame-

ters with a graphical user interface. Moreover, the component-based software system

“Boxed Economy Simulation Platform”(BESP) is proposed for simulating and ana-

lyzing a model. The example shows that our proposed framework and tools are quite

powerful and have the potential to assist thinking about complex societies.

1 Introduction

This paper presents a framework, process, and tools for modeling and simulating societies
as evolutionary complex systems1. Although the concept of the complex systems has been
highly demanded in social sciences, there is no satisfactory scheme for modeling and simu-
lating it. Many researchers almost agree with us that the agent-based model (multi-agent
model) is suitable for studying complex systems, however in the current state, there is a
problem that needs to be resolved. The problem is the absence of integrated environment
to support a whole research process, from conceptual modeling to simulation analysis. The
problem did not become too serious up to now, because the models were of small-scale and
for experimental use. It becomes, however, indispensable to resolve the problems, as the
simulations come to be used practically in social science and policy analysis.

In this paper, we introduce an object-oriented computational modeling for social sci-
ences in order to model and simulate complex systems where the model framework, “Boxed
Economy Foundation Model”(BEFM), and the modeling process is proposed. In order to
support making models based on the framework, “Model Driven Development” is proposed
as a new development process. To realize the process, we also propose tools, which we call
“Component Builder” (CB), that help us build the models based on the framework and pro-
cess. Moreover, “Boxed Economy Simulation Platform”(BESP) is proposed for simulating
and analyzing the models.
1 This paper was orignally published as the paper for the conference ESSA04[7] and WEHIA04[10]

System Element
(Agent)

The relationship is
changed as a result
of their interactions.

Interaction
(Competition, Cooperation,
Imitation, Communication)

order and institutions
(emergent property)

The internal state is
changed as a result
of their interactions.

The rule of the behavior is
changed as a result of their
interactions.

Emergence

upper layer
of the system

lower layer
of the system

The influence from
upper layer of the
system.

relation

Fig. 1. An overview of complex systems

2 Our targets: evolutionary complex systems

We will begin at considering the nature of our targets. This kind of consideration is essential
because “The ways of describing the problem situations (modelling languages) need to be
appropriate to the nature of the problem under investigation”[16].

There is no shared definition of complex systems among the scientists, but we can say
that the definition can be summarized in two ways as follows. In a broad sense, the complex
system means that the system has the components where each component changes the
internal states by mutually interacting with the other components. And, in a strict sense,
the complex system means the system where the rules of each component’s behavior are
changed dynamically during the simulation. These changes often occur under the influence
of the macroscopic situation that was emerged from microscopic interactions (Figure 1).
Therefore the nature of the elements of complex systems are summarized in Figure 2. In
this paper, we propose the framework, process, and tools for modeling and simulating the
complex systems as defined above.

3 Model Framework

3.1 Model framework and its roles

We would like to propose the model framework, “Boxed Economy Foundation Model”
(BEFM)2, in order to introduce an object-oriented computational modeling for social sci-
ences for modeling and simulating complex systems[8]. BEFM is the model framework which
defines the set of concepts for modeling societies, and which supports a whole process from
the analysis of target world to the execution of simulations.

2 Our model framework is able to be applied to social phenomena in general, although it was

originally developed as the framework for economic simulation[9].

2

An Element of
Physical Systems

An Element of
Complex Systems
(in a broad sense)

An Element of
Complex Systems
(in a strict sense)

The Behavior Rules

Nothing are changed in the element.

Action

Reaction

Internal
States

The Behavior Rules

The Internal States are changed under the Behavior Rules.

Action

Reaction

The Internal States are changed under the Behavior Rules.
On the contrary, the Behavior Rules are changed by Internal
States and the situation.

Action

ReactionThe Behavior Rules

Internal
States

Fig. 2. System elements

In the viewpoint of conceptual modeling, BEFM provides, as a model framework, (1) a
frame of reference for recognizing the target world, (2) a vocabulary for describing the con-
cepts obtained by recognition, and (3) a code for communications among the modelers. And,
in the viewpoint of simulation design, BEFM provides, as a software framework, (1) trans-
formation rules from conceptual models to simulation models, (2) support for implementing
the simulation models, and (3) architecture for sharing and reusing simulation models.

3.2 Major classes of the proposed framework

BEFM, which is an abstract of the real society from the view point of economic society,
consists of 9 major elements 3(Figure 3). Their class definition and the relations between
them are described as follows.

Agent “Agent” is defined to describe an autonomous actor who does an action. Each
individual and social groups such as corporations, governments, families, schools, regional
communities, and countries are all represented as Agents in the model.

Behavior The behavior of the agent is defined as “Behavior” in the model. Various activities
such as decision-making, production, trade and communication, are described by Behavior
3 There is another element named “Entity” in Figure 3. Entity is the abstraction of “Agent” and

“Goods”.

3

Space World

Information

Behavior

Clock

Goods

*

*
*

*

*

* RelationEntity

Agent

Channel

* *

*

end

start

Fig. 3. Major classes of Boxed Economy Foundation Model (BEFM)

of an Agent. Different kind of Behavior can be done at the same time by the Agent. In
BEFM, Behavior is defined as a state machine (Figure 5). The state machine is a system
which changes the state when the event is received. The state machine changes the state by
an event, which is stimulus from outside.

Goods “Goods” can be defined as material / immaterial things which are possessed by
Agents in order to be used or to be exchanged with other agents. For instance, the objects
modeled as Goods can be automobiles, oil, corn, financial stocks, ownership of land, books,
advertisements, memorandums, water, voices, noises, garbage, money, and so on.

Information The information which is possessed by Goods or Agents is defined as “Infor-
mation” in the model. Information will never exist alone, and will always be held by Goods
or Agents. Examples of information possessed by Agents are “memory”, “genetic informa-
tion”, and “name”. Goods often hold Information describing various contents. For example:
A newspaper can be modeled as an object which is paper (as Goods) with news articles (as
Information) printed on. A conversation can be modeled as a combination of the contents
(as Information) and the voice (as immaterial and transient Goods).

Relation An agent in a model usually has some kind of relationship with other agents
rather than being isolated. In BEFM, the relation between agents will be described by
“Relation” in the model. Relation describes relationships, for example: strangers, friends,
spouses, teachers, students, employees, employers. Relation is an object by which two Agents
are connected in a one-way or two-ways direction.

Channel When an Agent communicates with another Agent, “Channel” will be established
between the Behavior of the Agents based on Relation. Note that Channel does not connect
with Agent but connects with Behavior.

4

Agent

DoingC
BehaviorDoingB

BehaviorDoingA
Behavior

Behavior

RelationInformation

Goods

Fig. 4. The Illustration of Agent

State A

State B

Event1 / Action1

Event3 / Action3

initial state

final state

transition

Fig. 5. Behavior as a state machine

Clock “Clock” is defined as the class to manage the flow of time in the model, during the
execution of the simulation. Agent acts by the passage of the time of Clock.

Space “Space” is defined as the class to describe the spatial position in the model.

World “World” is defined as an environment in which Agents and Goods are placed.

3.3 Representing evolutionary complex systems with the proposed framework

Let us consider how we can represent an evolutionary complex system from the viewpoint
of our framework. First, the complex system in a broad sense, where the reaction depends
on the internal state, would be modeled as Figure 6. The agent behaves in the different way,
depending on the current state of the Behavior. The agent does Action A when being on
State A, and does Action B when being on State B.

Second, the complex system in a strict sense, where the rule of the behavior can be
changed over time, would be modeled as Figure 7. The agent adds new behavior or exchange

5

SampleBehavior

State A

Event_1

Action_A

SampleBehavior

State B

Event_1

Action_B

SampleBehavior

Event_1/ Action_A

Event_1/ Action_B
Event_2
/ Action_C

State A

State B

State C

In the case where the behavior is described
as the following state machine.

The agent does "Action A" reacting to
"Event_1", when the state is "State A".

The agent does "Action B" reacting to
"Event_1", when the state is "State B".

Fig. 6. Representing complex systems in a broad sense

Behavior Exchange

ExchangingBehavior

OriginalBehavior
Exchange

NewBehavior

generatingAdditingBehavior

NewBehavior

Behavior Generation

auto-finishing
AutoFinishBehavior

 Final State

IndependentBehavior

deletingDeletingBehavior

DeletedBehavior

Auto-Finished Behavior

Dehavior Deletion

Fig. 7. Representing complex systems in a strict sense

its current behavior with other behabior, also delete the behavior. Thus the behavior of the
agent can be changed.

Third, the evolution is able to be modeled as inheritance of the type of Behavior, Infor-
mation, Relation, and Goods.

4 Modeling Process

Next, we would like to outline a process for modeling with the proposed framework[10]. The
process consists of three major phases: “Conceptual Modeling Phase”, “Simulation Design
Phase”, and “Verification Phase”. These phases are supported by our tools “Component
Builder”(CB), which we will discuss in the next section.

Conceptual Modeling Phase The conceptual modeling phase is the phase to specify
what the target system is. The phase consists of the class analysis, the activity analysis,
and the communication-sequence analysis. In the class analysis, the modeler analyzes the
target world and describes the conceptual model. He/She extracts “Agent”, “Behavior”,
“Relation”, “Goods”, and “Information” from the target world, and defines them, according
to the conceptual model framework of BEFM

6

In the activity analysis, the modeler describes the procedure of agent’s behavior in an
activity diagram. The activity diagram is very similar to a flowchart.

In the communication-sequence analysis, the modeler describes the sequence of the com-
munication among the agents. The agent’s behavior is often taken in cooperation with
other behavior. Thus, the modeler describes the exchange of goods / information in a
communication-sequence diagram.

Simulation Design Phase In the simulation design phase, the modeler translates the
conceptual models into the simulation models (programs), which is executable program
on the platform “Boxed Economy Simulation Platform”(BESP), which we shall explain
later. The simulation design phase consists of “class design”, “behavior design”, and “world
composition”.

In the class design, the modeler describes the types and classes. It is based on the
conceptual model class diagram, which has been developed in the conceptual modeling phase.

In the behavior design, the modeler describes the statechart diagram in order to describe
the dynamics of the model. The modeler designs the statechart diagrams based on the
following diagrams, which are developed in the conceptual modeling phase: communication-
sequence diagram and activity diagram. In addition, the modeler may implement the details
of the simulation as a program code 4. Since the other parts of the simulation programs are
generated by the tools, the modeler does not have to write any more codes.

In the world composition, the modeler describes the initial settings of simulated world.
They are the data for building the simulation at the instance level.

Verification Phase In the verification phase, the modeler runs the simulation and inspects
whether the simulation program is coded rightly. If necessary, the modeler returns to the
first or second phase and modifies the models.

5 Modeling Tools

In order to support making the simulation models with the proposed framework and process,
we would like to propose “Component Builder”(CB) [10]. For conceptual modeling, CB
provides the drawing tools in UML (Unified Modeling Language). In addition, for simulation
design, CB provides the setup by which the programming to make the simulation is greatly
reduced. As a result, the modeler will be able to make the simulation as long as they have the
basic skills of programming, and they do not have to make the design or the implementation
concerning the structure which makes the programming more difficult. Moreover, the user
can make and change their simulation promptly, and then can give priority to the analysis
of the consequences.

CB consists of four designers and a composer: “Model Designer”, “Behavior Designer”,
“Activity Designer”, “Communication Designer” and “World Composer”(Figure 8). They
are the tools to generate the program code just by making the diagram and setting the
parameters with a graphical user interface.
4 Current tools, which we propose in this paper, are not sophisticated enough to transform from

design models to program code for a hundred percent. The modeler should write the program code

of the action description of agent’s behavior. We, however, now try to develop more sophisticated

tools which help modelers to build simulations without any programming.

7

Fig. 8. Modeling process and tools

5.1 Model Designer

Model Designer is a tool for modeling the static view of the simulation. With using Model
Designer, the modeler can generate the program code automatically just by drawing the
class diagram and setting the model with a graphical user interface.

5.2 Activity Designer

Activity Designer is a tool for modeling the activity of Agents. For conceptual modeling,
modelers can use this tool to draw the activity diagram based on UML.

5.3 Communication Designer

Communication Designer is a tool for modeling the interaction among Agents. For conceptual
modeling, modelers can use this tool to draw the sequence diagram based on UML.

5.4 Behavior Designer

Behavior Designer is a tool for modeling the dynamic view of the simulation. With using
Behavior Designer, the modeler can generate the program code automatically just by drawing
the state chart diagram and setting the model with a graphical user interface.

5.5 World Composer

World Composer is a tool for modeling the initial state of the simulation world. With using
World Composer, the modeler can generate the program code automatically just by setting
the parameters with a graphical user interface.

8

6 Simulation Platform

In order to execute the simulations based on the proposed framework, we would like to
propose “Boxed Economy Simulation Platform” (BESP) as a sharable basis for agent-based
social simulation[11]. BESP is a software platform to make, to execute, and to analyze the
agent-based social simulations.

BESP is designed to realize an extensible software application with component-based
architecture. The user can obtain the simulation environment which suits the needs, only
if he/she sets necessary components into the platform. There are two kinds of components
built into the platform: they are “model component” and “presentation component”. The
model component is a software component that implements the model which the user wants
to simulate. The model component is made based on BEFM. The presentation component
is a software component for the user interface to operate and to visualize the simulation,
and to output the results into the file.

Model components and presentation components are independent of each other, com-
municating indirectly by sending and receiving the events through BESP. Therefore, the
user simulates his/her original social model with existing presentation components even if
he/she makes only the model components. In contrast, the user makes his/her original user
interface as presentation components that do not specialize in a specific social model.

7 An example: Evolutionary simulation of strategy

Now we would like to demonstrate how we can model a society as an evolutionary complex
system with the proposed framework and tools. The example is evolutionary simulation of
strategy in the Iterated prisoner’s dilemma[6].

7.1 Target world

In the iterated prisoner’s dilemma, the players make their choice of “Cooperation”(C) or
“Defection”(D). The choice of defection yields a higher points than cooperation. If both
defect, however, both get lower points than if both had cooperated. The iterated prisoner’s
dilemma is said to be “an elegant embodiment of the problem of achieving mutual cooper-
ation, and therefore provides the basis for the analysis.”[3]

The player makes the choice based on its own “strategy”, that is the rule of the behavior.
The players are paired with each other in a round robin tournament. A certain number of
the matches are held in each game and then the score is updated and recorded. This is a
typical version of the model[2].

In this paper, we extend the model in which players will improve their strategies after the
tournament. There are two scenarios about the strategy improvement. The first is “Imitation
based on match result”, and the second is “Imitation based on the tournament result”. In
the experiment, the consequences of two scenarios are compared.

7.2 Model Overview

First, we describe the target world with the types “Agent” “Behavior” “Goods” “Informa-
tion” “Relation” according to BEFM. About “Agent”, the player of the game is modeled as
PlayerAgent(Figure 9: Left). In addition, the actor who manages the tournament and games
is modeled as RefereeAgent.

9

<<Agent Type>>

Referee

<<Agent Type>>

Player

<<Behavior Type>>

ManagingContestBehavior

<<Behavior Type>>

ConductingMatchBehavior

<<Behavior Type>>

PlayingBehavior

<<Behavior Type>>

ChangingStrategyBehavior

<<Behavior Type>>

ReceivingScoreBehavior

<<Behavior Type>>

ReceivingResultBehavior

<<Behavior Type>>

.StrategyBehavior

<<Relation Type>>

MyselfRelation

<<Agent Type>>

Referee

<<Agent Type>>

Player

<<Relation Type>>

MyselfRelation

<<Relation Type>>

EntryRelation
<<Relation Type>>

CurrentPlayerRelation

Fig. 9. Class diagram of the extended IPD model

The “Behavior” of each agent are represented as follows. PlayerAgent has some kind of
behavior: PlayingBehavior for playing the games, StrategyBehavior for deciding the choice
on the next move, and ChangingStrategyBehavior for updating the strategy. The strategy
is embodied as the automaton in the StrategyBehavior (Figure 10). RefereeAgent has two
kind of behavior: ManagingContestBehavior for managing the tournaments and Conduct-
ingMatchBehavior for making players play.

We next describe the flow of communication between agents in order to specify “Goods”
and “Information” which are passed between agents (Figure 11: Right). The figure shows
that there are no goods in this model. We can find some type of information: StartingSignal,
Choice, Preceding Choice, and Score Report.

At the final step, we describe the relation between agents as “Relation” (Figure 10:
Right)。There are following three relations: EntryRelation from RefereeAgent to PlayerAgent,
CurrentPlayerRelation from RefereeAgent to the PlayerAgents who are currently playing the
games, and MyselfRelation for the both of RefereeAgent and PlayerAgent.

Now we check the model from the viewpoint of evolutionary complex systems. The choice
of PlayerAgent is based on the strategy and the history of the game so far. It means that
the reaction is based on the internal state, so this model includes the characteristics of
“complex system” in a broad sense. Moreover, the PlayerAgent changes the own strategy
in this model. It means that the rule of the behavior can be changed, so this model is
also includes the characteristics of “complex system” in a strict sense. And, the model has
evolutionary aspects, because the strategy is inherited by the imitation.

7.3 Simulation Flow

Let us explain the flow of simulation, which is described in Figure 11. At first, when Ref-
ereeAgent receives TimeEvent, the ManagingContestBehavior makes the pair enter into the
round-robin matches. Then, ConductingMatchBehavior receives the information of a pair
and connect CurrentPlayerRelation from the agent to the PlayerAgents of the pair.

10

ChannelEvent
[IsStartSignal]
/ DefectAction

WaitingForTurn ChannelEvent [IsCorD]
/ DefectAction

ALLDStrategyBehavior

TFTStrategyBehavior

FRIEDMANStrategyBehavior

ChannelEvent [IsStartSignal]
/ CooperateAction

WaitingForTurn ChannelEvent [IsC]
/ CooperateAction

ChannelEvent [IsD]
/ DefectAction

ChannelEvent
[IsStartSignal]
/ CooperateAction

ChannelEvent [IsD]
/ DefectAction

WaitingForTurn

Angry

ChannelEvent [IsC]
/ CooperateAction

ChannelEvent [IsCorD]
/ DefectAction

ChannelEvent
[IsStartSignal]
/ CooperateAction

Fig. 10. Statechart diagrams of Strategy Behavior

RefereeAgent asks PlayerAgent about the choice of the next move. PlayingBehavior of
PlayerAgent receives the demand, and asks the own StrategyBehavior about the choice of
his/her next move. Then StrategyBehavior replies the choice, which is based on its own state,
through PlayingBehavior. ConductingMatchBehavior of the RefereeAgent checks the choices
and calculates the score based on the outcome of this move.

After the first turn, RefereeAgent asks about the choice of the next move with sending
the information of the preceding choices. PlayerAgent replies his/her choice to RefereeAgent
in the same way as at the first turn. Then, RefereeAgent updates the score. The process
above is iterated during certain moves.

Next, RefereeAgent sends the information about the scores to the PlayerAgent. The
PlayerAgents receives and records it. Then, RefereeAgent reports the scores to the own
ManagingContestBehavior. ManagingContestBehavior updates the list of total score of each
PlayerAgents. Thus the match of two players is finished. This process is iterated in a round-
robin tournament.

After the round-robin tournament, RefereeAgent sends the list of total scores in the
tournament to all PlayerAgents. PlayerAgent receives and records it. After the tournament
process, PlayerAgents receives TimeEvent. PlayerAgent imitates the other’s strategy.

7.4 Simulation Result

We would like to explain the simulation result only summarily, because the result itself is
not important in this paper. The simulation settings have two players per strategy, where
the 9 types of strategies are provided as follows: ALL-C, ALL-D, RANDOM, TFT, TF2T,
FRIEDMAN, JOSS, PER-CD, PER-CCD. As we have mentioned before, two types of set-
tings are experimented: (1) “Imitation based on match result” and (2) “Imitation based on
the tournament result”. In the scenario (1), all agents will adopt a strategy “ALL-D” after
some steps. Therefore the average score will be much lower than the one at the initial step.
In the scenario (2), on the contrary, agents will adopt a strategy “FRIEDMAN” or “TFT”
(Figure 12). Therefore the average score will be higher than the one at the initial step. Thus
we see that sharing the macroscopic information is effective to achieve mutual cooperation.

11

 : Clock

TimeEvent

 "Starting Signal"

For all matches
are finished
between
current players

Preparing the tournament

Preparing the match

Evaluating the result

Choosing the pair

Referee Player#1 Player #2

Evaluating the result

Recoding the score report

Concluding the tournament

Iterating to
this point

For all pairs
are matched
(round robin)

Choosing the target
of an imitation

: ALLD
Strategy
Behavior

: Changing
Strategy
Behavior

: Changing
Strategy
Behavior

PlayerAgents receive
TimeEvent at the last.

<< create >>

<< destroy >>

Choosing
the target
of an
imitation

: FRIEDMAN
Strategy
Behavior

<< create >>

<< destroy >>

: ALLC
Strategy
Behavior

: Playing
Behavior

: TFT
Strategy
Behavior

: Playing
Behavior

: Conducting
Match
Behavior

: Managing
Contest
Behavior

TimeEvent

TimeEvent

 "Starting Signal"

 "Choice"

 "Choice"

 "Starting Signal"

 "Preceding Choice"

 "Preceding Choice"

 "Preceding Choice"

 "Preceding Choice"

 "Starting Signal" "Start Signal"

 "Choice"

 "Choice"
 "Choice"

 "Choice"

 "Choice"

 "Choice"

 "Score Report"

Iterating to
this point

Fig. 11. Communication-sequence diagram of the extended IPD model

12

Fig. 12. Screenshot of the extended IPD simulation on BESP

Assembler Language

Programning language
(3rd generation)

Modeling language

Machine Language

L
e
v
e
l
o
f

A
b
s
tr

a
c
ti
o
n

high

low

Java, C++,
Visual Basic,
C, Pascal,...

UML

Examples of
Languages

Languages for
software Development

- Swarm
- RePast
- Ascape

Our Solution
(Boxed Economy)

Supporting Systems for
Agent-Based Simulation

Fig. 13. Level of Abstraction, Languages, and Supporting Systems

8 Comparison with the existing systems

In the final place, we shall make clear how our framework and tools are different from the
existing systems. In the last some years, several languages, frameworks and tools for agent-
based simulations have been proposed. For instance, “Swarm Simulation System” provides
the class library for the simulation of complex adaptive systems[13]. As well as Swarm,
“RePast” provides the class library to make the agent-based model[4]. “Ascape” provides
the framework, and it is said that the amount of the code description can be less than that
of Swarm and RePast[15]. “LSD” is a language for developing simulation models[1].

These supporting systems assist the modelers to write programs by providing a general
library and framework, and in fact these systems are useful for the reduction of programming.
These systems, however, would not support the modelers to do modeling. On the other hand,

13

Analysis

Design

Implementation

Execution

Development Process Artifacts Features of
Artifacts

Iteration (if necessary)

human and
machine readable

human and
machine readable

machine readable

DecideMoveByTitForTatBehavior

DecideMoveByTitFor2TatBehavior

DecideMoveByFriedmanBehavior

Behavior

conceptual model

design model

public class SayHelloBehavior extends AbstractSayHelloBehavior {

 protected void initialize() {
 // TODO Auto-generated method stub
 }
 protected void terminate() {
 // TODO Auto-generated method stub
 }
 protected void sayHelloAction() {
 MessageInformation message = new MessageInformation("Hello");
 this.sendInformation(TutorialModel.RELATIONTYPE_Friends,
 TutorialModel.BEHAVIORTYPE_ReceiveBehavior, message);
 }
 protected void receiveMessageAction() {
 Information receivedInformation = getReceivedInformation();
 }
}

source code

simulation results

Pit, Ait, Uit, x, s, Rit, Qit, Sit, Mit

14.3, 90.2, 25.0, 2, 0.2, 3.2, 55.4 ,95.9, 28.7

26.1, 87.5, 26.8, 0, 0.2, 0.0, 38.2, 12.0, 34.1

25.3, 88.9, 25.0, 2, 0.4, 3.9, 53.7 ,93.1, 28.7

38.2, 12.0, 34.1, 2, 0.5, 5.7, 63.9, 86.2, 26.9

57.1, 98.9, 32.3, 0, 0.5, 0.0, 53.7 ,93.1, 28.7

55.4 ,95.9, 28.7, 0, 0.5, 0.0, 47.5, 88.8, 26.1

53.7 ,93.1, 28.7, 0, 0.5, 0.0, 50.5, 87.6, 28.7

52.1, 90.3, 28.7, 0, 0.5, 0.0, 63.9, 86.2, 26.9

50.5, 87.6, 28.7, 0, 0.5, 0.0, 26.1, 87.5, 26.8

49.0, 84.9, 28.7, 0, 0.5, 0.0, 14.3, 90.2, 25.0

47.5, 88.8, 26.1, 1, 0.7, 6.4, 47.5, 88.8, 26.1

name="taro"
ID=2

amount=1

executable code

compiling

human readable
 "just paper"

human readable
 "just paper"

Fig. 14. Traditional Process of Software Development

our solution, i.e. providing a model framework, process, and tools, is to support a whole
process from conceptual modeling to simulation implementation (Figure 13).

From the viewpoint of software engineering, the existing systems are based on the tradi-
tional development process, which is driven by implementation — program coding (Figure
14). In the traditional development process, the transformation from design model to pro-
gram code is done by hand. According to this process, the modeler should write a lot of
program codes.

On the contrary, our solution is based on the emerging development process, which is
driven by modeling: Model Driven Development[10] 5 . We can use more high-level language
for development, instead of writing in the lower-level language, i.e. program code at the
moment (Figure 15). In the new process, we can concentrate on modeling without considering
the software implementation, because the program code will be an exact translation of the
model. In this sense, design models are development artifacts which is the same as design
artifacts, therefore the design model is no longer “just paper” or “blueprint”. Therefore, the
design models are development artifacts that contribute directly to simulation development.

5 In the field of software engineering, there is a trend toward considering the design models as the

development artifacts that contribute directly to software development. “MDA” (Model Driven

Architecture) and “Executable UML” (Unified Modeling Language) are proposed for the Model

Driven Development [5, 14, 12]. The point is “using modeling languages as programming languages

rather than merely as design languages.”[5]. As a result, “It makes it possible to raise the level

of abstraction for software development”[5] (Figure 13). History tells that the productivity and

quality are improved in consequence of raising the level of abstraction.

14

Analysis

Design

Implementation

Execution

Development Process Artifacts Features of
Artifacts

Iteration (if necessary)

human and
machine readable

human and
machine readable

human and
machine readable

machine readable

DecideMoveByTitForTatBehavior

DecideMoveByTitFor2TatBehavior

DecideMoveByFriedmanBehavior

Behavior

conceptual model

design model

public class SayHelloBehavior extends AbstractSayHelloBehavior {

 protected void initialize() {
 // TODO Auto-generated method stub
 }
 protected void terminate() {
 // TODO Auto-generated method stub
 }
 protected void sayHelloAction() {
 MessageInformation message = new MessageInformation("Hello");
 this.sendInformation(TutorialModel.RELATIONTYPE_Friends,
 TutorialModel.BEHAVIORTYPE_ReceiveBehavior, message);
 }
 protected void receiveMessageAction() {
 Information receivedInformation = getReceivedInformation();
 }
}

source code

simulation results

Pit, Ait, Uit, x, s, Rit, Qit, Sit, Mit

14.3, 90.2, 25.0, 2, 0.2, 3.2, 55.4 ,95.9, 28.7

26.1, 87.5, 26.8, 0, 0.2, 0.0, 38.2, 12.0, 34.1

25.3, 88.9, 25.0, 2, 0.4, 3.9, 53.7 ,93.1, 28.7

38.2, 12.0, 34.1, 2, 0.5, 5.7, 63.9, 86.2, 26.9

57.1, 98.9, 32.3, 0, 0.5, 0.0, 53.7 ,93.1, 28.7

55.4 ,95.9, 28.7, 0, 0.5, 0.0, 47.5, 88.8, 26.1

53.7 ,93.1, 28.7, 0, 0.5, 0.0, 50.5, 87.6, 28.7

52.1, 90.3, 28.7, 0, 0.5, 0.0, 63.9, 86.2, 26.9

50.5, 87.6, 28.7, 0, 0.5, 0.0, 26.1, 87.5, 26.8

49.0, 84.9, 28.7, 0, 0.5, 0.0, 14.3, 90.2, 25.0

47.5, 88.8, 26.1, 1, 0.7, 6.4, 47.5, 88.8, 26.1

name="taro"
ID=2

amount=1

executable code

compiling

generating

human readable
 "just paper"

(for some parts
 of simulation)

Fig. 15. New Process of Software Development

9 Conclusion

In this paper, we proposed a framework and tools for modeling and simulating societies
as evolutionary complex systems. We have already applied the proposed framework and
tools to several social phenomena as follows: the electric power market model, the model
of the video cassette format competition, the evolutionary market model (Nelson-Winter
model), the evolving network model, the evolutionary model of iterated prisoner’s dilemma,
the model of emergence and collapse of money from barters, the queuing model of airport,
and the artificial stock market model. And, we have introduced our framework and tools
into my classroom at the university. Our experiences show that our proposed framework and
tools are quite powerful and have the potential to assist thinking and communicating about
complex societies and economies.

The frameworks and tools are opened to public. Creating the foundation for studying
complex systems is an oversized project for our members to complete. We would like to
realize this by collaborating with many researchers in various fields. Please contact us on
http://www.boxed-economy.org/, if you are interested in our challenge.

15

References

1. E. S. Andersen and M. Valente. The art of simulation and the lsd system, 2003.

http://www.business.aau.dk/evolution/.

2. Robert Axelrod. The Evolution of Cooperation. Basic Books, 1984.

3. Robert M. Axelrod. The Complexity of Cooperation: Agent-Based Models of Competition and

Collaboration. Princeton University Press, 1997.

4. N. Collier. Repast: An extensible framework for agent simulation. The University of Chicago’s

Social Science Research, 2003. http://repast.sourceforge.net/.

5. David S. Frankel. Model Driven Architecture: Applying MDA to Enterprise Computing. Wiley

Publishing, 2003.

6. T. Iba. A study on simulating economies and societies as evolutionary complex systems. Grad-

uate School of Media and Governance, Keio University, 2003. in japanese.

7. T. Iba. A framework and tools for modeling and simulating societies as evolutionary complex

systems. In 2nd. International Conference of the European Social Simulation Association, 2004.

8. T. Iba, Y. Chubachi, Y. Takabe, K. Kaiho, and Y. Takefuji. Boxed Economy Foundation

Model. In The AAAI-02 Workshop on Multi-Agent Modeling and Simulation of Economic

Systems, pages 78–83, 2002.

9. T. Iba, M. Hirokane, Y. Takabe, H. Takenaka, and Y. Takefuji. Boxed Economy Model: Funda-

mental concepts and perspectives. In Proceedings of Computational Intelligence in Economics

and Finance, pages 941–944, 2000.

10. T. Iba, Y. Matsuzawa, and N. Aoyama. From conceptual models to simulation models: Model

driven development of agent-based simulations. In 9th Workshop on Economics and Heteroge-

neous Interacting Agents, 2004.

11. T. Iba and Y. Takefuji. Boxed Economy Simulation Platform for agent-based economic and

social modeling. In Computational Analysis of Social and Organizational Systems 2002, 2002.

12. Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven Architecture:

Practice and Promise. Addison-Wesley, 2003.

13. F. Luna and B. Stefasson, editors. Economic Simulations in Swarm: Agent-Based Modelling

and Object Oriented Programming. Kluwer Academic Publishers, 2000.

14. Stephen J. Mellor and Marc J. Balcer. Executable UML: A Foundation for Model-Driven

Architecture. Addison-Wesley, 2002.

15. M. T. Parker. What is ascape and why should you care? Journal of Artificial Societies and

Social Simulation, 4(1), 2001. http://www.soc.surrey.ac. uk/ JASSS/4/1/5.html.

16. B. Wilson. Systems: Concepts, Methodologies, and Applications. John Wiley & Sons, 2 edition,

1990.

16

