
Working Paper Series: Study on Artificial Societies, No.48

The Insurgent Disease?
Simulating the Geography of Insurgent Violence∗

Gaku Ito†

May 12, 2015

Abstract
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[O]nce conflict begins, there is some tendency for
it to spread out from the “infected” spot.

Norman Z. Alcock (1972), 64.

1 Introduction

Why does insurgent violence in civil war diffuse and cluster in specific locations? Scholars

have longly acknowledged that inter- and intra-state conflicts spread and cluster in space

(Alcock, 1972; Buhaug and Gleditsch, 2008; Danneman and Ritter, 2013; Iqbal and Starr,

2008; Most and Starr, 1980; Weidmann, 2015). As the research agenda of disaggregating civil

war progresses in recent years, scholars have increasingly explored the micro and subnational

variations of violence taking place in the context of civil war (Buhaug and Rød, 2006; Kalyvas,

2006, 2008). Among substantial insights, there is now a near consensus within civil war

research that disaggregated violence in civil war as well as aggregated conflicts cluster in a

manner similar to the spread of a disease (e.g., Braithwaite and Johnson, 2012, 2015; Linke

et al., 2012, Forthcoming; O’Loughlin et al., 2010a,b; O’Loughlin and Witmer, 2012; Schutte

and Weidmann, 2011; Weidmann and Ward, 2010; Zammit-Mangion et al., 2012).

At the first glance, spatial clustering of violence seems to indicate the existence of diffusion

or contagion processes. The subnational risks of violence depend not only on structural

attributes of localities that are largely exogenous to conflict processes but also on endogenous,

contagion-like processes of insurgent activities. Intuitively, one answer emerges: insurgent

violence clusters because thier activities are spatially and/or temporally contagious. Violence

itself can alter the prospects for further violence.

However, there are no largely agreed explanations for the micro-mechanisms underlying

the observed patterns of violence. Most fundamentally, the answer is not apparent because

clusters of violence are also consistent with another, noncontagious mechanism: clusters of

insurgent violence need not stem from contagion at all but can result from heterogeneity
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in the intrinsic tendency of subnational localities to host violence. Put otherwise, clusters

of insurgent violence emerge from a similar distribution of violence-facilitating attributes.

Although these two mechanisms are conceptually and theoretically distinct, their expressions

in empirical data are often observationally indistinguishable, making it extremely difficult

to identify the micro-level mechanisms underlying the observed patterns.

Indeed, existing studies tend to merely control for temporal and/or spatial dependences

in their econometric models rather than revealing the underlying generating mechanisms

(Schutte and Weidmann, 2011; Zhukov, 2012). Perhaps the most common empirical ap-

proach is employing spatial econometric models which incorporates spatially-lagged depen-

dent or independent variables to control and measure the potential diffusion effects. However,

although the spatially explicit econometric models allow for controlling and characterizing

the spatial nature of the observed data, the oft-employed spatial lags alone do not suffice

for examining the generating mechanisms. Consequently, it remains unclear what diffusion

process, if any, is at work within insurgent activities (Braithwaite and Johnson, 2015; Linke

et al., Forthcoming; Schutte and Weidmann, 2011; Zhukov, 2012).

This paper aims to address this gap drawing on the fine-grained geo-referenced data of

violence in the ongoing war in Afghanistan. We first briefly describe the spatial footprints

of insurgent violence. Second, we consider two primary explanations for spatial patterns

of insurgent violence. Third, we develop a simple agent-based model incorporated with

geo-referenced data of Afghanistan and examine the likely determinants and micro-level

mechanisms underlying the observed patterns of insurgent violence. This data-driven com-

putational approach enables not only clear specification of competing micro-mechanisms but

also making a tight link between hypothesized model and a specific empirical case (Bhavnani

et al., 2014; Ito and Yamakage, 2014; Lim et al., 2007; Weidmann and Salehyan, 2013).

In the broader context of civil war literature, this paper joins a growing interest in endoge-

nous processes of civil war. Much of the conventional civil war literature focuses on exogenous
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determinants of civil war onset, duration, and termination such as geography, economy, eth-

nic groups, and natural resources. Consequently, the endogenous processes and mechanism

through which such factors shape behavior of warring actors, and/or violence feeds itself rel-

atively under-explored (Balcells and Kalyvas, 2014; Kalyvas, 2006; Schutte and Weidmann,

2011; Zhukov, 2012). This gap within the literature has recently facilitated scholars to in-

vestigate endogenous conflict processes. Scholars have increasingly acknowledged that civil

war research remains incomplete without examination of endogenous dynamics of violence

which in turn shape severity, duration, and outcome of conflicts. Taking an approach of

empirically explicit computational modeling (Bhavnani et al., 2014; Lim et al., 2007; Wei-

dmann and Salehyan, 2013), we explore the micro-level mechanisms of insurgent violence

with a tight link to the specific case of Afghanistan.

The reminder of this paper proceeds as follows. In the next section, we provide a brief

overview of the war in Afghanistan and examine the spatial patterns of insurgent violence.

Section 3 reviews possible propositions on the clusters of violence in civil war. We then

present evidence-driven computational approach and develop a simple agent-based model

incorporated with empirical data in Section 4. After seeding the model with fine-grained spa-

tial data from Afghanistan, we validate the computational model using the empirical records

of insurgent violence, thereby examining the veracity of the propositions and explanatory

power of the model in Sections 5 and 6. The model demonstrates that the observed patterns

of insurgent violence in Afghanistan are consistent with a simple mechanisms of insurgent

attack and diffusion constrained by the exogenous conditions. The model also yields a fair

in-sample predictive performance. Robustness checks in Section 7 ensure that the simula-

tions results are unlikely to be products of arbitrary assumptions. While exogenous factors

substantially shape the insurgents’ behavior, endogenous diffusion dynamics are likely to be

at work, indicating the contagious nature of insurgent violence.
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2 Insurgent Violence in Afghanistan

We use the ongoing irregular war in Afghanistan as our case to explore the micro-level mech-

anisms of insurgent violence in civil war. Following the overthrown of the Taliban regime

in 2001 and the external occupation, the Taliban leader Mullah Muhammad Omar vowed

to “retake control of Afghanistan” in 2004 (Gall, 2004). The Taliban remnants gradually

launched the insurgency against the U.S.-led coalition and the Afghan government forces

(Farrell and Giustozzi, 2013). Despite the heavy losses and attrition that the Taliban have

suffered and the U.S.-led troop “surge,” a massive increase of coalition troops, the counterin-

surgency (COIN) campaign is not yet completed as the insurgents pose ever-present threat

to the order and security in Afghanistan (Farrell and Giustozzi, 2013; Johnson and DuPee,

2012; Johnson and Mason, 2008).

2.1 Dataset

The following empirical analysis relies on the dataset commonly used in the study of vi-

olence in Afghanistan: The U.S. military internal database called “Significant Activities”

(SIGACTs). The SIGACTs are the collection of short summary on events that include ac-

tors involved, caused casualties, event type, locations, timing, and other related information

that have been recorded by individual troops in the course of operations. Most notably,

records on locations are accurate at the 1km-level, offering researchers an accurate picture

of events on the ground. A subset of the event data that has originally been released as

the “Afghan War Diary” (AWD) by WikiLeaks.org in 2010 and is now also available to the

public from several news outlets and peer-reviewed journals as a part of replication materi-

als.1 Although we deeply recognize the potential risks of empirical analysis drawing on the
1Although the SIGACTs database offers a rare and noteworthy opportunity for researchers to uncover the

trends and patterns of insurgent violence in Afghanistan, it might suffer from potential bias. Two of them
are worth noting here (Donnay and Filimonov, 2014; Weidmann, 2013, Forthcomingb). First, there may be
a tendency that the military troops under-report collateral damage and civilian casualties caused by their
operations. However, this bias is not likely to cause serious problem in the analysis here, since the main focus
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data, the already widespread use of the dataset in the academic community leads us to the

recognition that empirical analyses relying on the dataset are not likely to harm or endanger

government officials, individuals, or institutions involved (e.g., Donnay and Filimonov, 2014;

O’Loughlin et al., 2010a; Weidmann, 2013, Forthcomingb; Zammit-Mangion et al., 2012).

2.2 Spatial Patterns of Insurgent Violence

The SIGACTs database covers both violent (e.g., IED explosions) and nonviolent (e.g.,

information provision from civilians) incidents across the country during the period from

January 2004 through December 2009, with 76, 910 entries. Rather than including both

violent and nonviolent incidents into the analysis, we opt to focus on the violent incidents

from the dataset.2 This filtering provides us 52, 196 incidents: 45, 628 attacks are coded as

insurgent violence and the remaining 6, 568 attacks are coded as ISAF violence, leaving the

remaining 24, 007 nonviolent incidents excluded from the analysis.

To clarify the spatial patterns of insurgent violence, we clipped individual insurgent

attacks to the closest population settlements based on their geo-coordinates, aggregating the

attacks into the settlement-level (Nsettlement = 37, 484).3 During the period covered by the

of this paper is the numbers of insurgent violence rather than casualties. Second, the reporting standards
for SIGACTs may have changed over time and the reporting procedure may vary across units, possibly
resulting in a significant measurement error. This concern is partly alleviated by focusing on the temporally
aggregated spatial distribution of insurgent violence, rather than the temporal patterns of insurgent violence.

2The SIGACTs database contains discrete types of incidents that are relevant for the purpose of this pa-
per. Drawing the “Category” column, we selected the following for insurgent violence, V iolenceINS : “Other
(Hostile Action),” “Assassination,” “Attack,” “Direct Fire,” “IED Explosion,” “IED False,” “IED Found/-
Cleared,” “IED Hoax,” “Indirect Fire,” “Mine Found/Cleared,” “Mine Strike,” “SAFIRE” (Surface-to-Air
Fire), “Security Breach,” “Unexploded Ordnance,” “Sniper Ops.” For ISAF attacks, V iolenceISAF , we
selected the following: “Cache Found/Cleared,” “Close Air Support,” “Counter Insurgency,” “Counter Ter-
rorism,” “Direct Fire,” “Escalation of Force,” “Indirect Fire,” “Search and Attack,” “Show of Force”, “Small
Unit Actions,” “Sniper Ops,” “Other Offensive,” “Raid.” For “Direct Fire” and “Sniper Ops” categories,
we match the subset of the data against “Affiliation” variable that contains information of the perpetrator
(“FRIEND,” “ENEMY,” “NEUTRAL,” “UNKNOWN”), and code those with “Affiliation”=“FRIEND” as
ISAF attacks and those with “Affiliation”=“ENEMY” as insurgent attacks.

3This minimal spatial aggregation is both necessary and widely used in micro-studies of civil war violence
(e.g., Hirose et al., 2014; Lyall, 2009, 2014; Zhukov, 2012). Location and population data of individual
settlements are taken from USAID MISTI/Humanitarian Response. “Afghanistan: Settlements (villages,
towns, cities),” March 2012 – June 2013 (https://www.humanitarianresponse.info/operations/afghanistan/
dataset/afghanistan-settlements-villages-towns-cities-0, accessed July 25, 2014). The maximum (minimum)
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dataset, 7, 644 settlements out of 37, 484 (20.4%) have experienced one or more insurgent

violence. Figure 1 maps the resultant spatial distribution of population settlements with

(red dots) and without (gray dots) insurgent attacks.

The “disease map” provides us visual evidence of conflict clustering, and a formal spa-

tial statistical test confirms it. Because individual incidents are aggregated to the closest

settlements (discrete locations), the (global) Moran’s I static, which measures the spatial

correlations between fixed spatial units and each of their neighbors, is suitable here.4 Fig-

ure 2 shows the Moran’s I static estimates for (logged) number of insurgent violence across

a sequence of distance band neighbor pairs (panel a) and temporal variation of the static

during the period between 2004 and 2009 using a half-year temporal window (panel b). For

all spatial and temporal windows, the null hypotheses of the nonexistence of spatial auto-

correlation were rejected at 5% level. While the levels of spatial autocorrelation decay as

the distance band increases, the consistently positive estimates suggest that population set-

tlements with (without) insurgent violence are tend to be located close to violent (peaceful)

settlements, indicating the spatial concentration of insurgent violence. Figure 2 (b) indi-

cates an upward trend in the Moran’s I estimates, suggesting that insurgent activities show

a stronger clustering pattern as the war unfolds.

While this preliminary analysis confirms that insurgent violence significantly clusters in

space, it raises the question of why such spatial patterns ever emerge. We will examine the

micro-mechanisms underlying the observed spatial patterns in the following sections.

distance between coordinates of individual violent incidents and the those of the corresponding nearest
settlements is 84.297km (0.002km), and the mean (median) distance is 1.364km (0.767km). Introducing the
cut-off distance does not substantially alter the spatial distribution.

4The Moran’s I static, which is analogous to the standard Pearson’s correlation measure, is commonly
used to characterize spatial autocorrelations and formally defined as:

I = n∑n
i=1

∑n
j=1 wij

∑n
i=1

∑n
j=1 wij (xi − x̄) (xj − x̄)∑n

i=1 (xi − x̄)2 ,

where n is the number of spatial units (observations), xi is the variable of interest, and wij is a spatial weight
which defines the spatial influence or relationship between units i and j.
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Figure 2: Spatial autocorrelations in insurgent violence. Panel (a) shows values of Moran’s
I for a sequence of distance band neighbor pairs (temporally aggregated data, 2004–2009).
Panel (b) shows values of Moran’s I for insurgent violence within half-year temporal windows
varying the neighborhood definition: 10- (black), 20- (dashed), 30-nearest settlements (gray).
All estimates are significant at 5% level.

3 Propositions on Violence Clustering

Why does insurgent violence diffuse and cluster? Scholars have proposed two primary expla-

nations how clusters of violence may emerge (Braithwaite and Johnson, 2015; Buhaug and

Gleditsch, 2008; Schutte and Weidmann, 2011). The first proposition suggests that clusters

of insurgent violence stem from the violence-facilitating, static factors which they themselves

cluster such as population size and geographic conditions. The second proposition, on the

other hand, argues that endogenous conflict dynamics as well as exogenous factors shape the

specific course of insurgent violence; occurrence of violence alters prospects of future violence

in the same location and nearby locations.

3.1 Structural Conditions

A large and well-established body of aggregated and disaggregated civil war literature has

demonstrated that country- and subnational-level structural factors such as population size,

economic development, and rough terrain associate to risks of civil war and insurgent vio-
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lence (e.g., Buhaug, 2010; Buhaug and Rød, 2006; Collier and Hoeffler, 2004; Fearon and

Laitin, 2003; Raleigh and Hegre, 2009; Toft, 2003; Weidmann, 2009). As insurgent activities

are not self-sufficient but highly constrained by pre-existing structural conditions, a series of

exogenous, structural factors are likely to shape the spatial distributions of violence by influ-

encing insurgents’ willingness and opportunity to engage violence (Braithwaite and Johnson,

2015, 115–117; Zhukov, 2012, 145–146).

This first approach, which is sometimes referred to as “confusion” or “risk heterogeneity”

hypothesis (Braithwaite and Johnson, 2015; Buhaug and Gleditsch, 2008; Johnson, 2008),

states that clusters of insurgent violence may simply mirror a similar distribution of time-

invariant local conditions (Buhaug and Gates, 2002; Buhaug and Gleditsch, 2008; Buhaug

and Rød, 2006). This view can be stated as following:

Hypothesis 1 The risk of insurgent violence is associated with a set of local structural

factors that are independent of one another.

There are two classes of prime structural covariates of insurgent violence: socioeconomic

and geographical factors. We will introduce each class in the following.

Socioeconomic Factors. Major population centers are considered to be a leading predic-

tor of violence since they provide insurgents not merely a large pool of recruitments and phys-

ical targets but also “sea” which shelters insurgent “fishes” from incumbent forces (Buhaug

and Rød, 2006; Collier and Hoeffler, 2004; Fearon and Laitin, 2003; Mao, 1961; Raleigh and

Hegre, 2009; Tollefsen and Buhaug, 2015). The promise of media visibility might also attract

insurgents who seek to signal their resolve and capability to their opponents and the public.

Another but related correlate of civil war violence which spatially clusters is local ethnic

configuration. Geographically concentrated ethnic groups are hypothesized to consider their

territory as their “homeland” and might motivate the population to fight for it; alternatively,

geographically concentrated groups are considered to have better social networks that insur-
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gents can use to mobilize the population and fewer difficulties in overcoming the collective

action problem (e.g., Toft, 2003; Weidmann, 2009). As the Taliban is commonly charac-

terized as a Pashtun-based insurgent movement (Farrell and Giustozzi, 2013; Johnson and

Mason, 2008), the local configuration of Pashtun is another primary predictor of violence in

the particular context of Afghanistan.

Spatial variation in levels of economic development is also deemed as a robust predictor

of insurgent violence (Berman et al., 2011; Buhaug et al., 2011; Hegre et al., 2009; Østby

et al., 2009). Low level of income has been hypothesized to facilitate insurgent activities

by providing motivation for rebellion and/or lowering opportunity costs of participation to

insurgent movements (Collier and Hoeffler, 2004; Grossman, 1991). On the other hand,

strategic considerations might lead insurgents to target wealthier areas to attract public

attentions or financial gains. Although there is no widely shared consensus on the causal

effects and mechanisms through which it shapes the geography of insurgency, the civil war

literature considers local economy to be a primary factors of civil war violence.

Geographic Factors. Geographic conditions also shape how insurgent activities unfold.

Inaccessible terrain tends to inhibit the states’ reach and thereby create favorable conditions

for insurgents to survive (Buhaug, 2010; Buhaug and Rød, 2006; Fearon and Laitin, 2003;

Herbst, 2000; McColl, 1969; O’Loughlin and Witmer, 2012; Schutte, 2014; Tollefsen and

Buhaug, 2015). As Fearon and Laitin (2003) argue, the essential condition for nascent

insurgents’ survive is the state’s reach into the local areas: as insurgents are often militarily

weaker than the incumbents, they are simply “better able to survive and prosper if the

government and military they oppose are relatively weak” (80).

One of the leading geographic factors that shape the local balance of power is road net-

works. Because roads are essential to the projection of power, poorly served road networks

have been considered to inhibit capabilities and the reach of incumbents into rural areas,

thereby providing opportunities for insurgents’ survive and activities (Buhaug, 2010; Buhaug
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and Rød, 2006; Fearon and Laitin, 2003; Herbst, 2000; Tollefsen and Buhaug, 2015). The

former commander of NATO troops in Afghanistan, Lieutenant General Karl Eikenberry,

eloquently summarized and contextualized this notion in the current policy debate on the

war in Afghanistan: “[w]here the road ends, the Taliban begins” (quoted in Gruber, 2007).

Indeed, the United States and the international community have invested heavily in reha-

bilitating and building Afghan infrastructure over the past decade. Underlying this policy

is the notion that underdeveloped roads isolate villages from “basic government services,

even police or military protection,” which in turn generate favorable conditions for insur-

gency (USAID, 2014); rehabilitating and paving roads helps extend the central government’s

reach, thereby bringing peace and economic prosperity across the country (Amiri, 2013).

On the other hand, scholars have also hypothesized that densely served road networks

facilitate insurgent activities because they ease the logistical constraints that insurgents face

and provide a pool of potential targets for attack while reducing the costs of incumbent

operations (Amiri, 2013; O’Loughlin et al., 2010b; Raleigh and Hegre, 2009; Zhukov, 2012).

Consequently, easily accessible areas with well served road networks are expected to facil-

itate insurgent activities rather than containing them. In a sharp contrast with Et. Gen.

Eikenberry, an anonymous senior Afghan commander recently expressed this view: “the road

is a disaster. It causes obstacles and delays and countless casualties” (quoted in Sieff, 2014).

While these two arguments disagree on the direction of the causal effects, they generally

agree on the correlation between accessibility to roads and risks of insurgent violence.

Related arguments focus on proximities to the capital and borders. Because a distance

from the center of state power as well as poorly served road networks hinges the state’s reach,

insurgents survive more easily in remote or peripheral areas.5 In the particular context

of Afghanistan, proximities to the Afghanistan-Pakistan border is often deemed to be a

prime predictor of insurgent violence due to the presence of the Taliban’s “safe heavens” in

5Raleigh and Hegre (2009) examines the impact of the distance from the capital in a nuanced way and
argues that conflict events cluster in population centers that are distant from the capital.
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the Federally Administered Tribal Areas (FATA) of Pakistan (Farrell and Giustozzi, 2013;

Johnson and Mason, 2008; O’Loughlin et al., 2010a,b).

3.2 Contagious Nature of Insurgent Violence

There is also compelling evidence that insurgent violence is in fact contagious, suggesting that

violence begets violence in the same and/or nearby localities (e.g., Braithwaite and Johnson,

2012; Johnson et al., 2011; Linke et al., 2012; O’Loughlin et al., 2010a,b; O’Loughlin and

Witmer, 2012; Schutte and Weidmann, 2011; Zhukov, 2012). Reflecting on such insights, the

second category of hypotheses states that violence begets violence in time and/or space.

Hypothesis 2 The risk of insurgent violence is not simply the product of the local struc-

tural factors but is temporally and spatially dependent on one another.

This hypothesis argues that exogenous structural factors alone are unlikely to explain the

spatial patterns of insurgent violence and that the endogenous processes of diffusion processes

should also shape how insurgent violence unfolds in the course of civil war; episodes of civil

war violence result from previous fighting in the same or nearby locations.

Researchers distinguish four general classes of spatial patterns of violence (Baudains

et al., 2013, 214–215; Schutte and Weidmann, 2011, 144–146; Zhukov, 2012, 146–147). First,

the dynamics where occurrence of violence spreads to previously peaceful locations while

originating place continues to experience violence is characterized as an expansion diffusion;

violence simply begets violence in both time and space. Second, an escalation diffusion

or hot spots is likely to be produced when violence continues to occur in the originating

place while not spreading to other locations. Third, a relocation diffusion is a process where

occurrence of violence does not facilitate further violence in the originating location while

facilitating violence in nearby locations, such that violence “travels” from the originating

location to previously peaceful locations. Finally, isolated flashpoints of violence appear
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when short-lived sequence of violence characterizes the conflict episodes.

While existing studies have found empirical evidence of subnational diffusion of civil war

violence, the exact nature of diffusion patterns and the underlying generating mechanisms

remain disputed. For example, Schutte and Weidmann (2011) explored the diffusion pat-

terns of civil war violence in Bosnia-Heregovina, Burundi, Kosovo, and Rwanda and found

that diffusion patterns in irregular civil wars tend to be primarily the escalation diffusion

whereas relocation diffusion is predominant in conventional civil wars with clear front line.

In contrast, Zhukov (2012) examined the role of road networks in the diffusion of conflict

events in the irregular civil war the North Caucasus and found that insurgent violence tends

to relocate along the road networks, reflecting on logistical constraints insurgents face on

a daily basis. O’Loughlin and Witmer (2012) also scrutinized the violence diffusion in the

North Caucasian conflicts and found properties of expansion diffusion, rather than relocation

or escalation diffusion alone, although the latter type of diffusion in the temporal dimen-

sion is more common. Based on a preliminary analysis drawing on the WikiLeaks AWD,

O’Loughlin et al. (2010a) argue that the insurgency in Afghanistan exhibits a expansion

diffusion where violence spreads to previously unaffected regions while violence continues to

occur in the Eastern and Southern border regions (cf. O’Loughlin et al., 2010b).

We aim to inform the debates between the two distinct approaches and over nature

of violence diffusion in civil war by examining the sufficient micro-level mechanisms that

generate the patterns of insurgent violence similar to the observed one, using the approach

of agent-based modeling incorporated with fine-grained empirical data.

4 Model

We develop an agent-based model to evaluate the plausibility of the mechanisms discussed

above. Agent-based modeling specifies hypothesized mechanisms that govern behavior and

interactions of constituent elements of a system called agents as a computer program. This
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technique enables to systematically explore whether and why specific micro-level mechanisms

generate a class of macro-level outcomes via computational experiments (Axelrod, 1997).

Another strength of agent-based modeling lies in its flexibility to incorporate with empir-

ical data, which allows for seeding and optimizing hypothesized models using empirical data

(Ito and Yamakage, 2014). The empirically-explicit computational modeling approach helps

not only contextualize abstract models into the specific case of interest but also validate

hypothesized micro-level mechanisms by comparing the model-generated outputs with the

empirical records. For example, Lim et al. (2007) and Weidmann and Salehyan (2013) devel-

oped agent-based models incorporated with spatial data of ethnic geography and analyzed

the patterns of violence and ethnic segregation in the former Yugoslavia, India, and Iraq,

and successfully demonstrated that a simple mechanism of ethnically and/or security mo-

tivated migration and subsequent violence accounts for the spatial distributions of violence

in actual conflicts. Bhavnani et al. (2014) used an agent-based model to not only explain

the observed patterns of communal violence but also assess how different levels and forms of

Israeli-Palestinian segregation would shape future violence in Jerusalem.

In line with these pioneering attempts, we rely on the approach of data-driven compu-

tational modeling to explore the micro-level mechanisms underlying the observed patterns

of insurgent violence in Afghanistan. In the following subsections, we first describe the

structure of the model and then specify the logic of insurgent violence.

4.1 Model Space and Initial Configurations

The model space consists of a set of N population settlements Si resided by M insurgent

agents Ij, with S = {S1, . . . , SN} denoting the set of settlements and I = {I1, . . . , IM}

denoting the set of agents. Model parameter N is set to Nsettlement = 37, 484, and settlements

Si are located according to the corresponding geo-coordinates. For a given settlement Si, we

refer to the set of its neighbor settlements as Ni. Insurgent agents Ij are randomly distributed
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to individual settlements Si at the beginning of a simulation run. At every discrete time

period t ∈ [1, tmax], insurgent agent Ij makes a binary decision whether to conduct an attack

in its current location Si, or relocate to another settlement Sj ∈ Ni.6 Once all agents have

made decisions, the model reports the number of attacks conducted in individual settlements

and then proceeds to time t+1. Each simulation run reports a vector of cumulative numbers

of insurgent attacks that have occurred in individual settlements, Ŷ = (Ŷ1, . . . , ŶN), which

can be directly compared with the empirical records, Y = (Y1, . . . , YN).

We define the neighborhood structure of the model, an N × N spatial weight matrix

(SWM) W , as a distance-weighted k-nearest neighbor (dwkNN) sparse matrix in which the

diagonal elements wii = 0 and non-diagonal elements wS
ij ≥ 0 capture the relative degree

of (spatial) influence of settlement Sj on settlement Si.7 We first construct a 20-nearest

neighborhood matrix with 37, 484 × 20 = 749, 680 non-zero entries wS
ij, in which twenty

geographically nearest settlements Sj are defined as neighbors of Si, or Sj ∈ Ni. We then

compute the geodesic distances between neighbor settlements penalized by the additional dis-

tances to the nearest roads from individual settlements to specify the weight of settlement Sj

for settlement Si, wS
ij. For simplicity, we opt to rely on the inverse-distance weighting (IDW)

scheme: wS
ij = d−1

ij , where dij indicates the inter-settlement distance between settlements Si

and Sj penalized by settlement-to-road distances in kilometers.8 Simply put, wS
ij reflects the

accessibility-weighted influence of neighbor Sj on Si; i.e., a more accessible neighbor is more

influential, and vice versa. Figure 3 maps the generated neighborhood network.

6The attach-or-relocate dichotomy is an arbitrary assumption for simplicity. For example, insurgents may
alternatively decide to just stay and hide. We will examine the impacts of this assumption in Section 7.

7Zhukov (2012) suggests that insurgent activities are heavily constrained by the logistical factors, and a
road distance matrix accurately represents such constraints. However, it is not computationally feasible to
construct a computational model on a 37, 484 × 37, 484 origin-destination (OD) matrix with 1, 405, 050, 256
entries. Although the dwkNN scheme is based on an arbitrary selection of neighborhood size k, it allows for
nuanced representation of the neighborhood structure at a relatively low computational cost.

8For example, if the inter-settlement geodesic distance between Si and Sj is 30km and settlement-to-road
distances are 5km and 2km, respectively, then dij = 30 + 5 + 2 = 37km, and wS

ij = 37−1 ∼ 0.027. The mean
(median) value of dij is 9.431 (7.254) and the maximum (minimum) value is 176.3 (0.167) with the standard
error of 7.186. Also note that spatial weight wS

ij is rescaled to the range [0, 1].
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4.2 Insurgent Behavior

The specification of insurgent behavior here is a generalization of the model in Weidmann and

Salehyan (2013) who explored the likely determinants of sectarian violence in Baghdad (cf.

Bhavnani et al., 2014; Lim et al., 2007). We generalize the model such that it incorporates

not only static factors but also diffusion terms as discussed in detail below. Specifically,

conditioning on the local environment of the current location Si, the decision of insurgent

agent Ij to carry out an attack at time period t + 1, or yijt+1 = 1, is assumed to be a

realization of a Bernoulli process with probability

pijt+1 ≡ P (yijt+1 = 1|xi, zit) = h(α + x⊤
i β + z⊤

it γ), (1)

where h(x) = exp(x)/(1 + exp(x)) is the inverse logit, and α denotes a time- and unit-

invariant model parameter that determines the baseline probability of insurgent attacks.9

Recall that decisions of insurgent agents in this model are assumed to be dichotomous:

attack or relocate. At every time period t, insurgent Ij decides to carry out an attack in

settlement Si in the subsequent period t + 1 with probability pijt+1; otherwise, Ij decides to

relocate to a randomly chosen neighbor settlement Sj ∈ Ni with probability 1 − pijt+1.

The intuition behind is that the probability of insurgent violence depends on two distinct

classes of factors: first, the inherent and structural susceptibility of the settlements where

insurgents are located, and second, temporal and spatial contexts. xi is a vector of settlement-

specific, time-invariant covariates (e.g., geographic factors) whereas zit is a vector of time-

variant covariates (e.g., local history of insurgent violence). β and γ are the vectors of the

corresponding model parameters that represent the logics behind the propositions presented

in the previous section. We call x susceptibility covariates and z diffusion covariates, and the

9While the probability of attacks is defined as a function of the proportion of co-ethnics in Weidmann
and Salehyan’s (2013) model (56), the proposed model incorporates zit covariates which capture the impacts
of past insurgents’ behavior. Our model collapses to a special case analogous to Weidmann and Salehyan’s
model without the diffusion terms. We would like to thank Karsten Donnay for clarifying this point.
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Table 1: Model Parameters

Parameter Notation Description

Model setting (fixed)
# population settlements N
# insurgent agents M

Insurgent behavior
Constant α
Susceptibility parameter β Degree and direction to which agents respond

to time-invariant local conditions x
Diffusion parameter γ Degree and direction to which agents respond

to time-variant local conditions z

corresponding coefficient vectors β susceptibility and γ diffusion parameters. γ is further

broken into spatial parameter γ1 and temporal parameter γ2 that respectively governs the

tendency of insurgent violence to diffuse spatially and temporally. While x and z covariates

determine the local conditions that insurgents face, β and γ parameters govern how they

respond to their local environment. Table 1 summarizes the model parameters.

4.3 Distinguishing Micro-mechanisms

Reflecting on insights derived from the existing studies, we include six x covariates: popula-

tion size (PopSize), Pashtun population size (PashtunPop), accessibility to roads (RoadAccess),

distance from the capital (KabulDist), and distance from the Afghanistan-Pakistan border

(APborder).10 We refer to the corresponding coefficient parameters as β1, β2, β3, β4, β5, and

β6. Table 2 reports the summary statistics of these covariates considered.11

10Three distance related covariates, RoadAccess, KabulDist, and APborder, are measured by the geodesic
distance from the closest roads, Kabul, and the Afghanistan-Pakistan border in kilometers, respectively.
Spatial data on local income level were derived from the “Geographically based Economic data” (G-Econ,
Nordhaus, 2006; available at http://gecon.yale.edu, accessed July 25, 2014), and all other settlement-level
attributes and data of road networks are obtained and computed using data available from USAID MIST-
I/Humanitarian Response.

11We log-transformed and rescaled all covariates to the range [−1, 1] to minimize the effect of extreme
values and make estimates easily comparable to each other.
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Similarly, we include two z covariates: spatial lag Spread and temporal lag History. For

a given settlement Si, Spreadit is defined as Spreadit = ∑k
j=1 wS

ij ŷjt, where wS
ij is a spatial

weight as defined above, and ŷjt denotes the number of insurgent attacks that have occurred

at settlement Sj ∈ Ni at time period t. Weighting spatially proximate incidents more

heavily than those in remote ones, Spreadit measures the distance-weighted degree to which

insurgent activities spread across immediate neighborhood networks. Historyit is defined as

the temporally weighted number of insurgent attacks that settlement Si has experienced until

time period t: Historyit = ∑t
τ=1 wT

tτ ŷiτ , where wT
tτ = (1+ t−τ)−1 is a temporal weight which

is analogous to the spatial weight wS
ij. Evaluating temporally proximate incidents heavily,

Historyit captures the severity of past insurgent activities it has experienced, which may also

shape the context in which future insurgent activities unfold. We refer to the corresponding

parameters γ1 and γ2 as spatial parameter and temporal parameter, respectively.

β and γ parameters allow for nuanced operationalization of micro-mechanisms hypothe-

sized by the confusion and contagion hypotheses. β parameters govern whether and to what

extent insurgent agents respond to the structural conditions they face at the local level, while

γ parameters shape how agents respond to their local context of insurgent activities and thus

which diffusion process is at work. A positive estimate of a given parameter indicates that

the corresponding covariate positively (negatively) impacts the settlement-level probability

of insurgent violence (relocation), whereas a negative estimates indicates otherwise.

5 Parameter Estimates

This section presents the main findings derived from the computational model. The analysis

here aims to optimize the model’s parameter combinations such that simulation outcomes

closely fit the empirical records along the specified dimensions of agreement, thereby identi-

fying the likely determinants and micro-mechanisms of insurgent violence. In the following,

we first present the validation strategy employed and then examine the effects of parameters.

19



Table 2: Summary Statistics

Covariate (logged) Mean Std. Dev. Median Range

PopSize 5.695 1.103 5.749 [1.099, 14.750]
PashtunPop 2.424 2.997 0 [0, 12.690]
Development 9.201 0.389 9.265 [6.483, 9.703]
RoadAccess (in km) −0.026 1.461 0.034 [−5.817, 3.881]
KabulDist (in km) 5.425 0.742 5.518 [−6.908, 6.723]
APborder (in km) 5.017 1.021 5.224 [−0.962, 6.466]
Note: All covariates are logged.

5.1 Validation Strategy

The validation strategy here follows Weidmann and Salehyan (2013).12 We first run Nrun

simulations with randomly drawn parameters from uniform distributions (parameter space

Θ0) and then select a subset of empirically plausible parameter combinations Θ1 ⊂ Θ0 that

generates distributions of insurgent violence similar to the observed one according to the

criteria presented below. This procedure allows for identifying the parameters that are nec-

essary to generate realistic patterns of violence and their impacts on simulation outcomes.13

For the following analysis, Nrun = 20, 000 simulation runs are conducted using randomly

drawn parameter combinations and different random seeds. The resultant distributions of

insurgent violence are compared and calibrated with the empirical records along two target

classes: location and number of violence (cf. Bhavnani et al., 2014). The agreement between

the predicted and observed locations of violence is measured by first collapsing predicted

data series Ŷ into a vector of binary indicators V̂ = (V̂1, . . . , V̂N), with V̂i ∈ {0, 1} denoting

the occurrence of violence at settlement Si during the simulation period and then computing

12See Berk (2008) for a comprehensive discussion on data-based evaluation of computational models.
13This parameterization approach allows for examining a large parameter space throughly at a relatively

low computational cost compared to sequential parameter sweeping. Recent studies on empirically-explicit
agent-based models (e.g., Bhavnani et al., 2014) as well as purely theoretical models (e.g., Siegel, 2011;
Weidmann, Forthcominga) rely upon similar approach to specify the parameter space that generates the
best fits with empirical records or examine the effects of individual parameters.
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true positive rate (TPR), false positive rate (FPR), and accuracy rate.14 The degree of

agreement for the number of insurgent violence is quantified by computing several Root

Meas Squared Error (RMSE) measures.

We define empirically plausible simulation runs as those that minimize the deviation of

the model outcome from the empirical records, which is operationalized by the following

conditions (cf. Bhavnani et al., 2014; Lim et al., 2007; Weidmann and Salehyan, 2013):

(1) accuracy rate > 0.5 (location of violence);

(2) TPR > FPR (location of violence); and

(3) the (weighted) RMSE smaller (better fit) than the 5th percentile value generated by

Nrun random null cases (number of violence).

We first discard the noniformative runs that generated no insurgent attacks, and then

select those that meet these three conditions to obtain empirically plausible parameter space

Θ1. As a general rule, a model with high binary predictive capability has a TPR consistently

higher than the corresponding FPR. Similarly, an accuracy rate greater than 0.5 ensures that

the model’s predictive performance is at least as good as chance. These conditions allow for

filtering those runs that correctly classify violent and peaceful settlements.

A “good-fit” run should not only yield a high TPR/FPR and accuracy ratio but also

minimize the deviation of predicted numbers of violence from the observed data series (con-

dition 3). Although RMSE =
√∑N

i=1(Yi − Ŷi)2/N is often employed as an error metric for

a calibration purpose, it might be ill-suited for the validation here given that occurrence of

insurgent violence is relatively rare in our dataset; as 29, 840 (79.6%) out of 37, 484 settle-

ments have experienced no insurgent violence during the period of investigation (i.e., Yi = 0),

a noninformative prediction simply assigning Ŷi = 0 produces a small RMSE indicating a

14These measures are formally defined as TPR (sensitivity) = # true positives (TP)
# TP+# false negatives (FN) , FPR =

# false positives (FP)
# FP+# true negatives (TN) , and accuracy = # TP+# TN

# TP+# FP+# TN+# FN , respectively. To compute these measures,
empirical records Y are also collapsed into V = (V1, . . . , VN ).
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“good-fit” (cf. Chadefaux, 2014, 15). Although this problem can be partly alleviated by

condition (1), we use the weighted RMSE (wRMSE) =
√∑N

i=1 wi(Yi − Ŷi)2/
∑N

i=1 wi instead

of RMSE as the error metric to address this problem. Introducing an weight wi = 1 − p(Yi)

which is associated to each observation, penalizes errors between predicted and observed

values for rare observations (e.g., Yi = Ymax = 323) more severely than those for abundant

ones (e.g., Yi = 0). Although wRMSE tends to tolerate overpredictions compared to RMSE,

it helps alleviate the above problem. In order to ensure the robustness of the results to the

weighting scheme, we also present results using an alternative (binary) weighting scheme

which assigns wi = 1−0.204 = 0.796 to those with violence (Ŷi ≥ 1) and wi = 0.204 to those

without violence (Ŷi = 0; parameter space Θ2 ⊂ Θ0).15

Nrun = 20, 000 random null cases, which constitute the benchmark of the validation

strategy, are generated by randomly assigning the observed number (45, 628) of attacks to

population settlements. 20, 000 spatial distributions of insurgent violence in hypothetical

“random conflicts” are generated by replicating this procedure. If the wRMSE of a given

simulation run is smaller than the 5th percentile of the “random conflict” distribution, the

corresponding run is considered to outperform random guesses.

5.2 Determinants of Insurgent Violence

Based on the results of the initial parameter sweeping, we restrict the sampling ranges for

parameters α, β, and γ to [−10, 10]. This restricted parameter region guarantees a vast

variation in simulation results. M = 15, 000 insurgent agents are allocated to randomly

selected population settlements at the beginning of a simulation run. Each run continues

until either (1) time step count t reaches to tmax = 300, or (2) the accumulated number of

insurgent attacks NV
t reaches to the empirical one (i.e., NV

t = 45, 628).

Filtering according to the selection criteria above yields a set of 1, 034 out of 20, 000
15Chadefaux (2014) developed a revised Brier score to mediate a similar problem by weighting mistakes

by the overall probability of a given outcome. The binary weighting scheme follows Chadefaux’s scheme.
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(5.17%) empirically plausible parameter combinations (Θ1; 930, 4.65% for Θ2). Although

the numbers are small, the remaining subsets of parameter combinations are relevant for

generating patterns of violence similar to the empirical records, and allow for identifying the

likely determinants and micro-mechanisms of insurgent behavior.

Susceptibility Parameter Which parameter shapes the patterns of insurgent violence?

The distributions of parameter values in the empirically plausible parameter spaces pro-

vide an intuitive indicator: a skewed distribution in the empirically plausible parameter

spaces indicates a systematic impact of the corresponding parameter on model fits, whereas

a parameter which is not necessary to generate empirically plausible patterns of violence is

expected to be indistinguishable from the full sample range (Weidmann and Salehyan, 2013).

Figure 4 plots the distributions of β parameters in Θ1 against those in Θ0 (uniform

distributions), which combines several layers of information. The estimated density curves

of parameter values in Θ0 are plotted to the right center, whereas those in Θ1 are plotted

to the left corner. Box plots represent 25th, 50th (median), and 75th percentile values, and

notches represent the 95% confidence intervals (CIs) of the medians that provide an eye-guide

for a significant difference.16 The small asterisks and diamonds refer to the means.

The most clear relationship was detected for parameter β2, which governs the impacts of

local ethnic configuration: the density estimate for parameter β2 (Figure 4b) is consistently

positive positive across empirically plausible parameter spaces Θ1 and Θ2, suggesting that

the size of Pashtun population of settlements (PshtunPop) would increase the subnational

risk of insurgent violence. Significant differences in medians were also found for other β

parameters in the expected direction, whereas the associations remain weaker than β2. The

density estimates for parameters β1 (PopSize), β3 (Development), and β5 (KabulDist)

16To formally test if distributions of parameters in the full sample range Θ0 and those in Θ1 (Θ2) differ
significantly, we ran a non-parametric Mann-Whitney U test (with Bonferroni corrections) comparing the
median parameter value in Θ0 with those in Θ1 (Θ2) for each parameter. The corresponding density curve
is shaded with blue if the null hypothesis that the samples of parameter values in Θ0 and Θ1 (Θ2) came
from the same population was rejected at 5% level. The Welch two sample t-tests yielded similar results.
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are positively skewed (Figure 4a, c, and e), while the estimates for β4 (RoadAccess) and

β6 (APborder) are negatively skewed (Figure 4d and f). Although the levels of economic

development and accessibility are postulated to either increase or decrease the local risk

of insurgent violence, the model indicates a significant positive relationship for parameter

β3, suggesting that locations with higher levels of development see elevated risk of violence.

The negative estimate for parameter β4 (Figure 4d) demonstrates that accessibility tend to

facilitate, rather than containing, insurgent violence. Note that, however, the estimates for

β parameters excepting for β2 are not narrow enough to rule out the possibility of opposite

effects given that they can take both positive and negative values in Θ1 and Θ2.

Taken together, these parameter estimates suggest that a simulation run tends to generate

patterns of insurgent violence similar to the observed one; and the effect of parameter β2

is most consistent across the empirically plausible parameter spaces when insurgent agents

are likely to conduct attacks in those settlements with large population (β1) as well as large

Pashtun population (β2) and higher levels of income (β3) located further from Kabul (β5) but

closer to roads (β4) and the Afghanistan-Pakistan border (β6). These detected relationships

are fairly robust to the choice of the weighting scheme of wRMSE, indicating that they are

unlikely to be a product of the specific selection criteria.

Diffusion Parameter Figure 5 shows the density estimates for diffusion parameters γ1

and γ2, which govern whether and how insurgent agents respond to location specific context

(Spread) and history of violence (History). An apparent association is found for temporal

parameter γ2: the distributions of γ2 in empirically plausible parameter spaces Θ1 and Θ2

are consistently negative, indicating that marked history of violence facilitates insurgents’

migration rather than further violence in the originating settlements. In contrast, the density

estimate for spatial parameter γ1 is statistically indistinguishable from the uniform distri-

bution, suggesting that γ1 is not likely to have a systematic impact on model’s fit with the

empirical records. This result leads us to a conclusion that a negative value assigned to γ2
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Figure 5: Beanplots of diffusion parameters. Kernel density estimates of parameter values in
Θ0 are plotted to the right center, whereas those in Θ1 (solid) and Θ2 (dashed) are plotted
to the left corner. Diamonds and asterisks refer to the means. The density curve is shaded
if a significant difference in median values of the corresponding parameter between Θ0 and
Θ1 (Θ2) is found at 5% level (Mann-Whitney’s U tests with Bonferroni corrections).

is likely to be a necessary condition for the model to generate “good-fit” distributions. As

with the estimates for β parameters reported above, these results appear to be fairly robust

to the selection of error metric employed.

The strongly negative estimate for temporal parameter γ2 indicates that occurrence of vi-

olence tends to facilitate migration of insurgent agents from their current locations to nearby

locations in those simulation runs that minimize the deviations of generated distributions

from the observed one. This is consistent with the pattern of relocation diffusion, suggesting

that occurrence of violence facilitates insurgents’ relocation and thereby spreads “seeds” of

violence from the originating locations.

6 Explanatory Power

The simulation exercise in the previous section helps us identify the likely determinants of

the insurgent violence. However, the analysis alone informs us little about the explanatory
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power of the model. Whether and to what extent does the model correctly predict the

location and number of insurgent violence across the population settlements? Although the

main purpose here is not to generate extremely accurate predictions, an assessment of the

model’s predictive performance, even in-sample, is likely to be a valuable heuristic of its

explanatory power (Ward et al., 2010; Weidmann and Ward, 2010).

The model’s capability to correctly classify violent and peaceful settlements can be quan-

tified using the Receiver Operating Characteristic (ROC) curve and the area under the ROC

curve (AUC) score. A ROC curve plots TPR and FPR as the output of each possible prob-

ability threshold for positive prediction, thereby evaluating the model’s binary classification

performance. The resultant curve displays the balance between TPR and FPR where a

highly predictive model (with high TPR and low FPR) produces the curve up in the top left

corner. An AUC score ranges between 0 and 1 and provides a single number summary of

the model’s classification performance. A random coin toss produces an AUC score of 0.5,

whereas a model with higher classification performance should yield a greater score.

The predicted probability of violence for each settlement is computed by simply averaging

the binary output V̂i. The probability assigned to a given settlement reflects the fraction

of simulation runs with optimized parameter combinations where insurgent violence has

occurred in the corresponding settlement. The ROC analysis using the computed probability

yields an AUC score of 0.77 (95% CI: 0.764, 0.776), indicating that the model’s capability

to classify those settlements with and without events is well beyond that of a random coin

toss.17 Using the resultant best threshold value for positive prediction that maximizes the

AUC score, Figure 6 maps the predicted spatial distribution of insurgent violence. The

model correctly predicted 6, 016 out of 7, 644 observed locations of insurgent violence (true

positives), while producing 9, 330 false positives (TPR = 0.787 and FPR = 0.313; 1.55 false

positives per true positive). Overall, the computational model correctly classified 26, 526

17The 95% CI was obtained by bootstrap using R’s pROC package (Robin et al., 2011). Parameter space
Θ2 yields an AUC score of 0.769 (95% CI: 0.763, 0.775), with 6, 005 true positives and 9, 234 false positives.
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(a) Parameter space Θ1 (AUC score = 0.77)

(b) Parameter space Θ2 (AUC score = 0.769)

Figure 7: Separation plots. Dark gray lines represent observed instances of events (Vi = 1),
whereas light gray lines represent nonevents (Vi = 0). The predicted probability of insurgent
violence increases from left to right.

out of 37, 484 (70.8%) violent and peaceful population settlements (accuracy = 0.708).18

Separation plots (Greenhill et al., 2011) in Figure 7 visualize the model’s binary classification

performance, which again underscore its internal validity.

The agreement between the simulated and the observed numbers of violence can be quan-

tified using standard correlation measure. The Spearman’s (Peason’s) correlation between

the mean simulated and the observed numbers of violence is 0.405 (0.367, logged) for param-

eter space Θ1 and 0.405 (0.367, logged) for Θ2. While the correlations remain modest, this

is at least the level of agreement that is not reached in any of 20, 000 randomized trials.19

Although the fair in-sample predictive performance underscores the model’s internal va-

lidity, over- and under-predictions were generated by the optimized parameter combinations.

Why do some predictions deviate from the empirical records? Given that the model is com-

pletely governed by the predetermined behavior rules and parameters, possible omitted vari-

ables or interactions are likely to account for the deviations. Most notably, the model does

not incorporate any counterinsurgent (COIN) efforts, which has been hypothesized to shape

insurgents’ behavior (e.g., Braithwaite and Johnson, 2012; Linke et al., 2012; O’Loughlin

and Witmer, 2012). Indeed, over-predictions are concentrated around the center part of the
18This point must be interpreted with caution because a comprehensive test of predictive accuracy requires

an out-of-sample validation while the analysis here is essentially an in-sample validation. Although we deeply
recognize the danger of overfitting, we leave testing out-of-sample validation for future research.

19The highest correlation reached by the “random conflicts” remains ρ = −0.044.

29



country (Figure 6), which roughly corresponds to the vacuum of COIN activities.

A straightforward preliminary analysis provides tentative support for this speculation:

the model systematically over-predicts insurgent violence in settlements with few COIN

efforts while under-predicting violence in those with marked COIN activities. The average

number of ISAF attacks is considerably higher in the false negative settlements (0.504)

than in the false positive ones (0.065).20 Similarly, under-predictions in numbers of attacks

are positively correlated with the observed numbers of ISAF violence, with Spearman’s

(Peason’s) correlation of 0.403 (0.465, logged). Given the positive correlation between the

observed numbers of insurgent and COIN violence (ρ = 0.409, r = 0.582), this comparison

implies that the deviations are likely to be the consequence of omission of COIN efforts.

This is consistent with the findings of existing studies in support of the “tit-for-tat”

associations between insurgent and COIN activities (e.g., Braithwaite and Johnson, 2012;

Linke et al., 2012; O’Loughlin and Witmer, 2012). This is the interaction that is not modeled

within the presented framework that exclusively focuses on insurgents’ behavior.

7 Robustness Checks

The analyses in the previous two sections identified the likely determinants of insurgent

violence and demonstrated the veracity of the computational model. However, if it were the

case that the results depended on some specifications, this would question the theoretical and

empirical plausibility of the model. Specifically, potential sensitivities are likely to lie along

the two dimensions: the topology of neighborhood networks and the behavior of insurgent

agents. We provide an overview of the sensitivity tests regarding these two dimensions in

the following subsections. Reassuringly, none of the following sensitivity tests yields results

that deviate markedly from those reported in the previous sections.21

20In contrast, the opposite holds for the correct predictions: the average number of ISAF attacks is higher
in the true positive settlements (0.814) than in the true negative ones (0.012).

21See Appendix for more detailed information on the following robustness checks <URL>.
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7.1 Neighborhood Network

The neighborhood networks are the pathways through which insurgent agents move around

and violence diffuses. Naturally, one might wonder whether and to what extent the network

topology influences the simulation results. Do alternative definitions of neighborhood net-

work substantially alter the results reported in the previous section? In order to examine

potential sensitivities of the results, additional 20, 000 × 2 simulation runs have been con-

ducted using alternative network sizes k = 10 and k = 30 instead of the baseline value of

k = 20 while holding all other parameters at the baseline values.

Figures ?? to ?? in Appendix plot the density estimates for simulation runs using these

alternative network sizes. As these density estimates are substantially indistinguishable from

those with k = 20, it can be concluded that the parameter estimates are fairly robust to the

changes of neighborhood definitions. The alternative parameter settings did not alter the

model’s predictive performance either. Optimized parameter combinations yield the AUC

scores of 0.762 (95% CI: 0.756, 0.768) for k = 10 and 0.775 (95% CI: 0.77, 0.781) for k = 30,

respectively. The levels of correlations between predicted and observed numbers of violence

also remain at the level reported in the previous section, with Spearman’s (Pearson’s) ρ =

0.394 (0.355) for k = 10 and 0.413 (0.374) for k = 30. These results guarantee that the

results presented in the previous sections are not products of the specific network sizes.

7.2 Binary Decision

Thus far, insurgent agents are assumed to make binary decisions: attack at the current lo-

cation or relocate to another settlement. Although this dichotomy applies as long as there

are several actions of which only one is subject to the analysis (cf. Siegel, 2011, 995), insur-

gents might alternatively decide to just stay and hide among civilians while not conducting

attacks. We examine the potential sensitivity of the simulation results to the dichotomy

assumption by allowing for the third option of “stay and hide.”
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Specifically, we extend the baseline model such that it incorporates an additional model

parameter q which determines the probability that insurgent agents decide to stay at their

current locations. If insurgent agent Ij decides not to conduct an attack with probability

1−pijt+1, Ij decides to stay at its current location Si with probability q; otherwise, it decides

to migrate to another settlement Sj with probability 1 − q. This extended model coincides

with the baseline model when q = 0.

Another 20, 000 simulation runs were conducted with q set at 0.5 while holding all other

parameters as in the baseline setting. The results generally agree with those presented in the

previous section, suggesting that our results do not depend crucially on the binary-decision

assumption. The same set of structural factors significantly impacts the model’s fit with

the empirical records, while relocation diffusion process also shapes the insurgent behavior

(Figures ?? and ?? in Appendix). The extended model yields an almost identical explanatory

power with the baseline model, with the AUC score of 0.769 (95% CI: 0.763, 0.775) and the

correlation estimate of ρ = 0.409. These results suggest that the main findings are not likely

to be an artifact produced by the dichotomy in the baseline model. These lead us to the

conclusion that the simple dichotomy employed in the baseline model is sufficient to generate

realistic spatial patterns of insurgent violence.

8 Conclusion

Violence in the context of civil war diffuses and clusters, but the micro-mechanisms underly-

ing the observed macro-outcome have been remained disputed. On the one hand, contagious

nature of insurgent activities can alter the prospects for future violence at the same and

nearby locations, thereby generating clusters of violence. On the other hand, clusters of vi-

olence at the macro level are consistent with the proposition that clusters of violence simply

emerge from a similar distribution of violence-attracting attributes. Drawing on fine-grained

georeference data and agent-based computational modeling technique, this paper explored
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the micro-level mechanisms underlying the macro-level patterns of insurgent violence. The

computational model demonstrated that while exogenous structural conditions such as lo-

cal ethnic configuration substantially constrain insurgents’ behavior, endogenous diffusion

processes are also likely to shape how insurgent activities unfold. Specifically, the model

demonstrated that relocation diffusion process is likely to be consistent with insurgent vio-

lence in Afghanistan, suggesting that such an endogenous dynamic cannot be simply assumed

away in the study of civil war violence. The fairly good agreement between the simulated

and observed distributions of insurgent violence suggests that the model captures the plausi-

ble micro-level mechanisms of insurgent behavior. Moreover, these results and findings were

found to be robust to the changes in parameter settings.

The findings derived from computational model provide support for relocation diffusion

and run counter to the earlier insights of Schutte and Weidmann (2011) who argue that

the diffusion patterns of civil war violence are primarily escalation rather than relocation

diffusion. Even though Schutte and Weidmann (2011) do not include Afghanistan within

the scope of analysis and imply that the particular diffusion process observed should vary

from a civil war to another, the simulation exercise in this paper suggests that relocation

diffusion would also shape how irregular warfares unfold.

The limitations of this paper include the purely in-sample validation strategy and the

assumption of the agent-based model. First, the current analysis remains essentially in-

sample validation where the pitfall of overfitting cannot be ruled out. An over-fitted model

tends to reproduce idiosyncratic patterns of the training data rather than capturing the

systematic features of the generating mechanisms. This would produce accurate in-sample

predictions while yielding poor out-of-sample predictive performance. An out-of-sample,

in addition to the current in-sample, validation scheme is likely to be required to further

validate the computational model.

Another issue concerns the assumption of the computational model: the exclusive focus
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on insurgent behavior. Put another way, it remains a model of insurgency without coun-

terinsurgency. This simplification might be problematic given that existing studies have

consistently found the “tit-for-tat” associations between insurgent violence on the one side

and counterinsurgent efforts on the other (e.g., Braithwaite and Johnson, 2012; Linke et al.,

2012; O’Loughlin and Witmer, 2012; Toft and Zhukov, 2012; but see Braithwaite and John-

son, 2015). The systematic relationship between the observed COIN efforts and over- and

under-predictions also suggests that it is a main challenge for future research is to incor-

porate the model with COIN activities as well as interactions with insurgents. Despite its

preliminary character, the data-driven computational model will contribute to the emerging

research agenda of disaggregation of civil war and better understanding of conflict process.
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